Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.235
Filtrar
1.
Cell Death Discov ; 10(1): 186, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649363

RESUMEN

Neuroblastoma (NB) is a common childhood tumor with a high incidence worldwide. The regulatory role of RNA N6-methyladenosine (m6A) in gene expression has attracted significant attention, and the impact of methyltransferase-like 14 (METTL14) on tumor progression has been extensively studied in various types of cancer. However, the specific influence of METTL14 on NB remains unexplored. Using data from the Target database, our study revealed significant upregulation of METTL14 expression in high-risk NB patients, with strong correlation with poor prognosis. Furthermore, we identified ETS1 and YY1 as upstream regulators that control the expression of METTL14. In vitro experiments involving the knockdown of METTL14 in NB cells demonstrated significant inhibition of cell proliferation, migration, and invasion. In addition, suppressing METTL14 inhibited NB tumorigenesis in nude mouse models. Through MeRIP-seq and RNA-seq analyses, we further discovered that YWHAH is a downstream target gene of METTL14. Mechanistically, we observed that methylated YWHAH transcripts, particularly those in the 5' UTR, were specifically recognized by the m6A "reader" protein YTHDF1, leading to the degradation of YWHAH mRNA. Moreover, the downregulation of YWHAH expression activated the PI3K/AKT signaling pathway, promoting NB cell activity. Overall, our study provides valuable insights into the oncogenic effects of METTL14 in NB cells, highlighting its role in inhibiting YWHAH expression through an m6A-YTHDF1-dependent mechanism. These findings also suggest the potential utility of a biomarker panel for prognostic prediction in NB patients.

2.
Biology (Basel) ; 13(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38666826

RESUMEN

Grass carp (Ctenopharyngodon idella) and barbel chub (Squaliobarbus curriculus)-both Leuciscinae subfamily species-demonstrate differences in grass carp reovirus (GCRV) infection resistance. We infected barbel chubs with type II GCRV and subjected their liver, spleen, head kidney, and trunk kidney samples to investigate anti-GCRV immune mechanisms via RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR). We identified 139, 970, 867, and 2374 differentially expressed genes (DEGs) in the liver, spleen, head kidney, and trunk kidney, respectively. Across all four tissues, gene ontology analysis revealed significant immune response-related DEG enrichment, and the Kyoto Encyclopedia of Genes and Genomes analysis revealed pattern recognition receptor (PRR) and cytokine-related pathway enrichment. We noted autophagy pathway enrichment in the spleen, head kidney, and trunk kidney; apoptosis pathway enrichment in the spleen and trunk kidney; and complement- and coagulation-cascade pathway enrichment in only the spleen. Comparative transcriptome analysis between GCRV-infected barbel chubs and uninfected barbel chubs comprehensively revealed that PRR, cytokine-related, complement- and coagulation-cascade, apoptosis, and autophagy pathways are potential key factors influencing barbel chub resistance to GCRV infection. qRT-PCR validation of 11 immune-related DEGs confirmed our RNA-seq data's accuracy. These findings provide a theoretical foundation and empirical evidence for the understanding of GCRV infection resistance in barbel chub and hybrid grass carp-barbel chub breeding.

3.
Comput Methods Programs Biomed ; 249: 108159, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583291

RESUMEN

BACKGROUND AND OBJECTIVE: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. The accurate survival prediction for CRC patients plays a significant role in the formulation of treatment strategies. Recently, machine learning and deep learning approaches have been increasingly applied in cancer survival prediction. However, most existing methods inadequately represent and leverage the dependencies among features and fail to sufficiently mine and utilize the comorbidity patterns of CRC. To address these issues, we propose a self-attention-based graph learning (SAGL) framework to improve the postoperative cancer-specific survival prediction for CRC patients. METHODS: We present a novel method for constructing dependency graph (DG) to reflect two types of dependencies including comorbidity-comorbidity dependencies and the dependencies between features related to patient characteristics and cancer treatments. This graph is subsequently refined by a disease comorbidity network, which offers a holistic view of comorbidity patterns of CRC. A DG-guided self-attention mechanism is proposed to unearth novel dependencies beyond what DG offers, thus augmenting CRC survival prediction. Finally, each patient will be represented, and these representations will be used for survival prediction. RESULTS: The experimental results show that SAGL outperforms state-of-the-art methods on a real-world dataset, with the receiver operating characteristic curve for 3- and 5-year survival prediction achieving 0.849±0.002 and 0.895±0.005, respectively. In addition, the comparison results with different graph neural network-based variants demonstrate the advantages of our DG-guided self-attention graph learning framework. CONCLUSIONS: Our study reveals that the potential of the DG-guided self-attention in optimizing feature graph learning which can improve the performance of CRC survival prediction.


Asunto(s)
Neoplasias Colorrectales , Aprendizaje Automático , Humanos , Redes Neurales de la Computación , Periodo Posoperatorio , Curva ROC
4.
Artículo en Inglés | MEDLINE | ID: mdl-38573578

RESUMEN

Water resources security is an important cornerstone of regional sustainable development, but the current evaluation system of water resources security is not scientific, and the measurement of safety level has not been optimized by combining algorithms. In this paper, indicators are selected according to the actual situation in Anhui Province. Firstly, correlation analysis (CA) and principal component analysis (PCA) are used to reduce the dimensionality of indicators, and then, the scientific evaluation is carried out based on genetic algorithm optimized back propagation neural network (GA-BP). This paper improves the generalization ability of the evaluation model and overcomes the shortcomings of the traditional model, which is slow in convergence and easy to fall into local optimality. The results showed that the water resources security level showed an obvious improvement trend from 2006 to 2020 and stabilized at a relatively safe level from 2014 to 2020. The subsystem of water resources environmental security is the least secure, followed by the subsystem of social and economic security, and the security of water resources regulation and response is basically stable at a relatively safe level. The conclusion of this study can provide decision-making basis for the relevant research of government, society, and scientific community.

5.
Acta Pharm Sin B ; 14(4): 1605-1623, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572102

RESUMEN

Immune-mediated liver injury (ILI) is a condition where an aberrant immune response due to various triggers causes the destruction of hepatocytes. Fibroblast growth factor 4 (FGF4) was recently identified as a hepatoprotective cytokine; however, its role in ILI remains unclear. In patients with autoimmune hepatitis (type of ILI) and mouse models of concanavalin A (ConA)- or S-100-induced ILI, we observed a biphasic pattern in hepatic FGF4 expression, characterized by an initial increase followed by a return to basal levels. Hepatic FGF4 deficiency activated the mitochondria-associated intrinsic apoptotic pathway, aggravating hepatocellular apoptosis. This led to intrahepatic immune hyper-reactivity, inflammation accentuation, and subsequent liver injury in both ILI models. Conversely, administration of recombinant FGF4 reduced hepatocellular apoptosis and rectified immune imbalance, thereby mitigating liver damage. The beneficial effects of FGF4 were mediated by hepatocellular FGF receptor 4, which activated the Ca2+/calmodulin-dependent protein kinasekinase 2 (CaMKKß) and its downstream phosphatase and tensin homologue-induced putative kinase 1 (PINK1)-dependent B-cell lymphoma 2-like protein 1-isoform L (Bcl-XL) signalling axis in the mitochondria. Hence, FGF4 serves as an early response factor and plays a protective role against ILI, suggesting a therapeutic potential of FGF4 and its analogue for treating clinical immune disorder-related liver injuries.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38658737

RESUMEN

Trace amine-associated receptor 1 (TAAR1) is an intracellular expressed G-protein-coupled receptor that is widely expressed in major dopaminergic areas and plays a crucial role in modulation of central dopaminergic neurotransmission and function. Pharmacological studies have clarified the roles of dopamine D1 receptor (D1R) in the medial prefrontal cortex (mPFC) in cognitive function and social behaviors, and chronic stress can inhibit D1R expression due to its susceptibility. Recently, we identified TAAR1 in the mPFC as a potential target for treating chronic stress-induced cognitive and social dysfunction, but whether D1R is involved in mediating the effects of TAAR1 agonist remains unclear. Combined genomics and transcriptomic studies revealed downregulation of D1R in the mPFC of TAAR1-/- mice. Molecular dynamics simulation showed that hydrogen bond, salt bridge, and Pi-Pi stacking interactions were formed between TAAR1 and D1R indicating a stable TAAR1-D1R complex structure. Using pharmacological interventions, we found that D1R antagonist disrupted therapeutic effect of TAAR1 partial agonist RO5263397 on stress-related cognitive and social dysfunction. Knockout TAAR1 in D1-type dopamine receptor-expressing neurons reproduced adverse effects of chronic stress, and TAAR1 conditional knockout in the mPFC led to similar deficits, along with downregulation of D1R expression, all of these effects were ameliorated by viral overexpression of D1R in the mPFC, suggesting the functional interaction between TAAR1 and D1R. Collectively, our data elucidate the possible molecular mechanism that D1R in the mPFC mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits.

7.
Nat Commun ; 15(1): 3220, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622115

RESUMEN

Induced oncoproteins degradation provides an attractive anti-cancer modality. Activation of anaphase-promoting complex (APC/CCDH1) prevents cell-cycle entry by targeting crucial mitotic proteins for degradation. Phosphorylation of its co-activator CDH1 modulates the E3 ligase activity, but little is known about its regulation after phosphorylation and how to effectively harness APC/CCDH1 activity to treat cancer. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1)-catalyzed phosphorylation-dependent cis-trans prolyl isomerization drives tumor malignancy. However, the mechanisms controlling its protein turnover remain elusive. Through proteomic screens and structural characterizations, we identify a reciprocal antagonism of PIN1-APC/CCDH1 mediated by domain-oriented phosphorylation-dependent dual interactions as a fundamental mechanism governing mitotic protein stability and cell-cycle entry. Remarkably, combined PIN1 and cyclin-dependent protein kinases (CDKs) inhibition creates a positive feedback loop of PIN1 inhibition and APC/CCDH1 activation to irreversibly degrade PIN1 and other crucial mitotic proteins, which force permanent cell-cycle exit and trigger anti-tumor immunity, translating into synergistic efficacy against triple-negative breast cancer.


Asunto(s)
Proteínas de Ciclo Celular , Proteómica , Ciclo Celular/fisiología , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Estabilidad Proteica , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Mitosis
9.
Infect Drug Resist ; 17: 1345-1356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596533

RESUMEN

Objective: This study aims to investigate the clinical distribution characteristics and drug susceptibility profiles of invasive Candida isolates in a tertiary hospital in Urumqi. Methods: The examination was conducted on samples obtained from patients who were clinically diagnosed with invasive candidiasis in this hospital. A total of 109 strains of Candida strains were identified through the use of internal transcribed spacer (ITS) sequencing and fungal cultivation methods.The clinical distribution of the strains was analyzed. Antifungal drug susceptibility tests were performed using the Sensititre YO10 fungal drug susceptibility plate based on the micro-broth dilution method. Results: Candida albicans had the highest percentage (51.38%) among 109 Candida isolates, followed by C. glabrata (18.35%) and C. tropicalis (15.60%). The isolates were predominantly found in the respiratory department (41.28%), intensive care unit (ICU) (31.19%), and infection department (9.17%).The results of drug susceptibility tests indicated that amphotericin B, 5-fluorocytosine, and echinocandins exhibited good in vitro antifungal activity, with a susceptibility rate of over 96%. However, the azoles demonstrated low antifungal activity, especially posaconazole and voriconazole, which had high resistance rates of 64.71% for C. tropicalis and 70% for C. glabrata, respectively. Conclusion: In our hospital, Candida albicans was identified as the primary causal agent of invasive candidiasis. In terms of in vitro antifungal activity, echinocandins, amphotericin B, and 5-fluorocytosine demonstrated efficacy against invasive Candida infections. However, it was important to note that C. glabrata and C. tropicalis exhibited low susceptibility to azoles.

10.
J Appl Crystallogr ; 57(Pt 2): 240-247, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596728

RESUMEN

The suitability of point focus X-ray beam and area detector techniques for the determination of the uniaxial symmetry axis (fibre texture) of the natural mineral satin spar is demonstrated. Among the various diffraction techniques used in this report, including powder diffraction, 2D pole figures, rocking curves looped on φ and 2D X-ray diffraction, a single simple symmetric 2D scan collecting the reciprocal plane perpendicular to the apparent fibre axis provided sufficient information to determine the crystallographic orientation of the fibre axis. A geometrical explanation of the 'wing' feature formed by diffraction spots from the fibre-textured satin spar in 2D scans is provided. The technique of wide-range reciprocal space mapping restores the 'wing' featured diffraction spots on the 2D detector back to reciprocal space layers, revealing the nature of the fibre-textured samples.

11.
Nat Commun ; 15(1): 2949, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580645

RESUMEN

Manipulating liquid flow over open solid substrate at nanoscale is important for printing, sensing, and energy devices. The predominant methods of liquid maneuvering usually involve complicated surface fabrications, while recent attempts employing external stimuli face difficulties in attaining nanoscale flow control. Here we report a largely unexplored ion beam induced film wetting (IBFW) technology for open surface nanofluidics. Local electrostatic forces, which are generated by the unique charging effect of Helium focused ion beam (HFIB), induce precursor film of ionic liquid and the disjoining pressure propels and stabilizes the nanofilm with desired patterns. The IBFW technique eliminates the complicated surface fabrication procedures to achieve nanoscale flow in a controllable and rewritable manner. By combining with electrochemical deposition, various solid materials with desired patterns can be produced.

12.
J Med Chem ; 67(7): 5866-5882, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38556760

RESUMEN

MERTK and AXL are members of the TAM (TYRO3, AXL, MERTK) family of receptor tyrosine kinases that are aberrantly expressed and have been implicated as therapeutic targets in a wide variety of human tumors. Dual MERTK and AXL inhibition could provide antitumor action mediated by both direct tumor cell killing and modulation of the innate immune response in some tumors such as nonsmall cell lung cancer. We utilized our knowledge of MERTK inhibitors and a structure-based drug design approach to discover a novel class of macrocyclic dual MERTK/AXL inhibitors. The lead compound 43 had low-nanomolar activity against both MERTK and AXL and good selectivity over TYRO3 and FLT3. Its target engagement and selectivity were also confirmed by NanoBRET and cell-based MERTK and AXL phosphorylation assays. Compound 43 had excellent pharmacokinetic properties (large AUC and long half-life) and mediated antitumor activity against lung cancer cell lines, indicating its potential as a therapeutic agent.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral
13.
Cancer Lett ; : 216882, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636893

RESUMEN

Super enhancers (SEs) are genomic regions comprising multiple closely spaced enhancers, typically occupied by a high density of cell-type-specific master transcription factors (TFs) and frequently enriched in key oncogenes in various tumors, including neuroblastoma (NB), one of the most prevalent malignant solid tumors in children originating from the neural crest. Cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) is a newly identified super-enhancer-driven gene regulated by master TFs in NB; however, its function in NB remains unclear. Through an integrated study of publicly available datasets and microarrays, we observed a significantly elevated CDK5RAP3 expression level in NB, associated with poor patient prognosis. Further research demonstrated that CDK5RAP3 promotes the growth of NB cells, both in vitro and in vivo. Mechanistically, defective CDK5RAP3 interfered with the UFMylation system, thereby triggering endoplasmic reticulum (ER) phagy. Additionally, we provide evidence that CDK5RAP3 maintains the stability of MEIS2, a master TF in NB, and in turn, contributes to the high expression of CDK5RAP3. Overall, our findings shed light on the molecular mechanisms by which CDK5RAP3 promotes tumor progression and suggest that its inhibition may represent a novel therapeutic strategy for NB.

14.
Aging (Albany NY) ; 162024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38643465

RESUMEN

Disrupted mitochondrial dynamics and mitophagy contribute to functional deterioration of skeletal muscle (SM) during aging, but the regulatory mechanisms are poorly understood. Our previous study demonstrated that the expression of thyroid hormone receptor α (TRα) decreased significantly in aged mice, suggesting that the alteration of thyroidal elements, especially the decreased TRα, might attenuate local THs action thus to cause the degeneration of SM with aging, while the underlying mechanism remains to be further explored. In this study, decreased expression of myogenic regulators Myf5, MyoD1, mitophagy markers Pink1, LC3II/I, p62, as well as mitochondrial dynamic factors Mfn1 and Opa1, accompanied by increased reactive oxygen species (ROS), showed concomitant changes with reduced TRα expression in aged mice. Further TRα loss- and gain-of-function studies in C2C12 revealed that silencing of TRα not only down-regulated the expression of above-mentioned myogenic regulators, mitophagy markers and mitochondrial dynamic factors, but also led to a significant decrease in mitochondrial activity and maximum respiratory capacity, as well as more mitochondrial ROS and damaged mitochondria. Notedly, overexpression of TRα could up-regulate the expression of those myogenic regulators, mitophagy markers and mitochondrial dynamic factors, meanwhile also led to an increase in mitochondrial activity and number. These results confirmed that TRα could concertedly regulate mitochondrial dynamics, autophagy, and activity, and myogenic regulators rhythmically altered with TRα expression. Summarily, these results suggested that the decline of TRα might cause the degeneration of SM with aging by regulating mitochondrial dynamics, mitophagy and myogenesis.

15.
Plants (Basel) ; 13(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38592894

RESUMEN

Fusarium crown rot (FCR), primarily caused by Fusarium pseudograminearum, has emerged as a new threat to wheat production and quality in North China. Genetic enhancement of wheat resistance to FCR remains the most effective approach for disease control. In this study, we phenotyped 435 Chinese wheat cultivars through FCR inoculation at the seedling stage in a greenhouse. Our findings revealed that only approximately 10.8% of the wheat germplasms displayed moderate or high resistance to FCR. A genome-wide association study (GWAS) using high-density 660K SNP led to the discovery of a novel quantitative trait locus on the long arm of chromosome 3B, designated as Qfcr.hebau-3BL. A total of 12 significantly associated SNPs were closely clustered within a 1.05 Mb physical interval. SNP-based molecular markers were developed to facilitate the practical application of Qfcr.hebau-3BL. Among the five candidate FCR resistance genes within the Qfcr.hebau-3BL, we focused on TraesCS3B02G307700, which encodes a protein kinase, due to its expression pattern. Functional validation revealed two transcripts, TaSTK1.1 and TaSTK1.2, with opposing roles in plant resistance to fungal disease. These findings provide insights into the genetic basis of FCR resistance in wheat and offer valuable resources for breeding resistant varieties.

16.
Cancer Gene Ther ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429367

RESUMEN

Patients diagnosed with glioblastoma (GBM) have the most aggressive tumor progression and lethal recurrence. Research on the immune microenvironment landscape of tumor and cerebrospinal fluid (CSF) is limited. At the single-cell level, we aim to reveal the recurrent immune microenvironment of GBM and the potential CSF biomarkers and compare tumor locations. We collected four clinical samples from two patients: malignant samples from one recurrent GBM patient and non-malignant samples from a patient with brain tumor. We performed single-cell RNA sequencing (scRNA-seq) to reveal the immune landscape of recurrent GBM and CSF. T cells were enriched in the malignant tumors, while Treg cells were predominately found in malignant CSF, which indicated an inhibitory microenvironment in recurrent GBM. Moreover, macrophages and neutrophils were significantly enriched in malignant CSF. This indicates that they an important role in GBM progression. S100A9, extensively expressed in malignant CSF, is a promising biomarker for GBM diagnosis and recurrence. Our study reveals GBM's recurrent immune microenvironment after chemoradiotherapy and compares malignant and non-malignant CSF samples. We provide novel targets and confirm the promise of liquid CSF biopsy for patients with GBM.

17.
Appl Opt ; 63(7): 1867-1874, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437291

RESUMEN

Extreme ultraviolet (EUV) radiation plays a key role in the fields of material science, attosecond metrology, and lithography. However, the reflective optical components typically used in EUV systems contribute to their bulky size, weight, and increased costs for fabrication. In this paper, we theoretically investigate transmissive metalens designs capable of focusing the EUV light based on the Pancharatnam-Berry phase. The designed metalens is composed of nanoscale elliptical holes, which can guide and manipulate EUV light due to the higher refractive index of the vacuum holes compared to that of the surrounding material. We designed an EUV metalens with a diameter of 10 µm, which supports a focal length of 24 µm and a numerical aperture of up to 0.2. It can focus 55-nm EUV incident light to a diffraction-limited spot, and the focusing efficiency is calculated to be as high as about 7% over a broad EUV frequency range (50-65 nm). This study reveals the possibility of applying a dielectric metalens in the EUV region without a transmissive optical material.

18.
J Hepatocell Carcinoma ; 11: 477-488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463543

RESUMEN

Purpose: Recently, hepatic arterial infusion chemotherapy (HAIC) has also gained popularity for hepatocellular carcinoma (HCC). Several studies have compared HAIC and Transarterial chemoembolization (TACE). However, comparisons between TACE plus HAIC and HAIC are rarely reported. Here, we evaluated the performance of HepaSphere DEB-TACE combined with HAIC (Hepa-HAIC) compared to HAIC in patients with advanced HCC. Patients and Methods: In this retrospective study, we enrolled 167 patients diagnosed with advanced HCC and treated at Peking University Cancer Hospital from May 2018 to May 2022. The cohort comprised 74 patients who received HepaSphere DEB-TACE combined with HAIC-FOLFOX (Hepa-HAIC) and 93 patients who received HAIC-FOLFOX. Over 60% of patients received prior treatments. To avoid selection bias, propensity score matching was applied to the efficacy and safety analyses. The primary endpoints are progression-free survival (PFS) and overall survival (OS); the secondary endpoints include objective response rate (ORR), disease control rate (DCR), and safety. Results: Propensity-matching yielded 48 pairs, and group baselines were almost equal after matching. Median PFS and median OS were both higher in the matched Hepa-HAIC cohort (median PFS: 8.9 vs 5.8 months, p = 0.035; median OS: 22.4 vs 9.5 months, p = 0.027), which was consistent with pre-matching analysis. The ORR in the Hepa-HAIC and HAIC cohorts was 75.0% and 37.5%, respectively; the DCR was 93.8% after Hepa-HAIC and 81.3% after HAIC. There was no treatment-related death. Grade 3-4 ALT elevation was more frequent in the Hepa-HAIC group (33.3% vs 8.3%, p = 0.003), while vomiting was more frequent in the HAIC group (29.2% vs 12.5%, p = 0.084). Conclusion: The Hepa-HAIC group is superior to the HAIC group in metrics of PFS, OS, ORR, and DCR, which indicates the combination of HepaSphere DEB-TACE and HAIC may lead to improved outcomes with a comparable safety profile in advanced HCC.

19.
Front Plant Sci ; 15: 1355178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463563

RESUMEN

Systemic acquired resistance (SAR) is an inducible disease resistance phenomenon in plant species, providing plants with broad-spectrum resistance to secondary pathogen infections beyond the initial infection site. In Arabidopsis, SAR can be triggered by direct pathogen infection or treatment with the phytohormone salicylic acid (SA), as well as its analogues 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole (BTH). The SA receptor non-expressor of pathogenesis-related protein gene 1 (NPR1) protein serves as a key regulator in controlling SAR signaling transduction. Similarly, in common wheat (Triticum aestivum), pathogen infection or treatment with the SA analogue BTH can induce broad-spectrum resistance to powdery mildew, leaf rust, Fusarium head blight, and other diseases. However, unlike SAR in the model plant Arabidopsis or rice, SAR-like responses in wheat exhibit unique features and regulatory pathways. The acquired resistance (AR) induced by the model pathogen Pseudomonas syringae pv. tomato strain DC3000 is regulated by NPR1, but its effects are limited to the adjacent region of the same leaf and not systemic. On the other hand, the systemic immunity (SI) triggered by Xanthomonas translucens pv. cerealis (Xtc) or Pseudomonas syringae pv. japonica (Psj) is not controlled by NPR1 or SA, but rather closely associated with jasmonate (JA), abscisic acid (ABA), and several transcription factors. Furthermore, the BTH-induced resistance (BIR) partially depends on NPR1 activation, leading to a broader and stronger plant defense response. This paper provides a systematic review of the research progress on SAR in wheat, emphasizes the key regulatory role of NPR1 in wheat SAR, and summarizes the potential of pathogenesis-related protein (PR) genes in genetically modifying wheat to enhance broad-spectrum disease resistance. This review lays an important foundation for further analyzing the molecular mechanism of SAR and genetically improving broad-spectrum disease resistance in wheat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...